lab 3

 from gensim.models import Word2Vec

from nltk.tokenize import word_tokenize
import nltk
nltk.download('punkt_tab')
corpus = [
 "A patient with diabetes requires insulin injections.",
 "Medical professionals recommend exercise for heart health.",
 "Doctors use MRI scans to diagnose brain disorders.",
 "Antibiotics help fight bacterial infections.",
 "A doctor specializes in diagnosing and treating diseases."
]
tokens = [word_tokenize(s.lower()) for s in corpus]
model = Word2Vec(tokens, vector_size=50, window=3, min_count=1, sg=1)
print("Similar to 'doctor':", model.wv.most_similar("doctor", topn=5))

Comments

Popular posts from this blog

lab 6

lab 5

lab 1