lab 3
from gensim.models import Word2Vec
from nltk.tokenize import word_tokenize
import nltk
nltk.download('punkt_tab')
corpus = [
"A patient with diabetes requires insulin injections.",
"Medical professionals recommend exercise for heart health.",
"Doctors use MRI scans to diagnose brain disorders.",
"Antibiotics help fight bacterial infections.",
"A doctor specializes in diagnosing and treating diseases."
]
tokens = [word_tokenize(s.lower()) for s in corpus]
model = Word2Vec(tokens, vector_size=50, window=3, min_count=1, sg=1)
print("Similar to 'doctor':", model.wv.most_similar("doctor", topn=5))
Comments
Post a Comment