C4.5
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.model_selection import train_test_split
import pandas as pd
data = pd.read_csv("heart.csv") # Load dataset (ensure heart.csv is available)
X, y = data.iloc[:, :-1], data.iloc[:, -1] # Features and target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = DecisionTreeClassifier(criterion="entropy").fit(X_train, y_train) # C4.5 uses entropy
y_pred = model.predict(X_test)
print("Accuracy:", accuracy_score(y_test, y_pred), "Precision:", precision_score(y_test, y_pred),
"Recall:", recall_score(y_test, y_pred), "F1 Score:", f1_score(y_test, y_pred))
Comments
Post a Comment