Lab 8
Import matplotlib.pyplot as plt
From sklearn import datasets
From sklearn.model_selection import train_test_split
From mlxtend.plotting import plot_decision_regions
From sklearn.metrics import accuracy_score
From sklearn.ensemble import RandomForestClassifier
# Load IRIS data set
Iris = datasets.load_iris()
X = iris.data[:, 2:]
Y = iris.target
# Create training/ test data split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y)
# Create an instance of Random Forest Classifier
Forest = RandomForestClassifier(criterion=’gini’,
N_estimators=5,
Random_state=1,
N_jobs=2)
# Fit the model
Forest.fit(X_train, y_train)
# Measure model performance
Y_pred = forest.predict(X_test)
Print(‘Accuracy: %.3f’ % accuracy_score(y_test, y_pred))
Comments
Post a Comment