Lab 8
Import matplotlib.pyplot as plt From sklearn import datasets From sklearn.model_selection import train_test_split From mlxtend.plotting import plot_decision_regions From sklearn.metrics import accuracy_score From sklearn.ensemble import RandomForestClassifier # Load IRIS data set Iris = datasets.load_iris() X = iris.data[:, 2:] Y = iris.target # Create training/ test data split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, stratify=y) # Create an instance of Random Forest Classifier Forest = RandomForestClassifier(criterion=’gini’, N_estimators=5, Random_state=1, N_jobs=2) # Fit the model Fo...