import numpy as np

import pandas as pd 

import csv

from pgmpy.estimators import MaximumLikelihoodEstimator

from pgmpy.models import BayesianModel

from pgmpy.inference import VariableElimination

heartDisease = pd.read_csv(r'C:/Users/lab5heart.csv')

heartDisease = heartDisease.replace('?',np.nan)

print('Sample instances from the dataset are given below')

print(heartDisease.head())

print('\n Attributes and datatypes') 

print(heartDisease.dtypes)

model = BayesianModel([('age','heartdisease'),('sex','heartdisease'),('exang','heartdisease'),('cp','heartdisease'),('heartdisease', 'restecg'),('heartdisease','chol')])

print('\n Learning CPD using Maximum likelihood estimators')

model.fit(heartDisease,estimator=MaximumLikelihoodEstimator)

print('\n Inferencing with Bayesian Network:') 

HeartDiseasetest_infer = VariableElimination(model)

print('\n 1.Probability of HeartDisease given evidence= restecg :1') 

q1=HeartDiseasetest_infer.query(variables=['heartdisease'],evidence={'restecg':1})

print(q1)

print('\n 2.Probability of HeartDisease given evidence= cp:2 ')

q2=HeartDiseasetest_infer.query(variables=['heartdisease'],evidence={'cp':2})

print(q2)

Comments

Popular posts from this blog

Web

Lab 1 ai