LAB 1(IMAGE CLASSIFICATION) import tensorflow as tf from tensorflow.keras import datasets, layers, models import matplotlib.pyplot as plt import numpy as np # Load CIFAR-10 dataset (train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data() train_images, test_images = train_images / 255.0, test_images / 255.0 # Normalize # Class names in CIFAR-10 class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] # Plot some sample images plt.figure(figsize=(10,10)) for i in range(25): plt.subplot(5,5,i+1) plt.xticks([]) plt.yticks([]) plt.grid(False) plt.imshow(train_images[i]) plt.xlabel(class_names[int(train_labels[i])]) plt.show() # Define CNN model model = models.Sequential() model.add(layers.Conv2D(32, (3,3), activation='relu', input_shape=(32, 32, 3))) model.add...